Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.
KMID : 0368420080510010052
Journal of Plant Biology
2008 Volume.51 No. 1 p.52 ~ p.57
Thermal Dissipation of Excess Light inArabidopsis Leaves is Inhibited after Gamma-irradiation
Moon Yu-Ran

Kim Jin-Hong
Lee Min-Hee
Kim Jae-Sung
Chung Byung-Yeoup
Abstract
To elucidate the effect of ionizing radiation on the non-photochemical quenching (NPQ) oir chlorophyll fluorescence, we analyzed the buildup and release of NPQ inArabidopsis wild-type (WT) andnpq1- 2 mutant plants after gamma-irradiation. Thenpqi- 2 mutant cannot normally induce the buildup of NPQ by a mutation in the violaxamthin de-epoxidase gene. A dose of 50 Gy h for 4 h significantly suppressed such buildup in the mutant and, more noticeably, in the WT. Both the initial rise and maximum level of NPQ were gradually inhibited after gamma-irradiation. In contrast, the release of NPQ and the maximum photochemical efficiency (Fv/Fm) of Photosystem II were largely unaffected in either genotype. This inhibition of NPQ buildup could be partly attributable to a significant decrease in the content of carotenoids, including xanthophyll pigments. Moreover, inhibition that was dependent on the xanthophyll cycle substantially enhanced the sensitivity of irradiated leaves to a photoinhibitory illumination of 800 |imol photons m 2 s"1. The difference in Fv/Fm values between the WT andnpq1- 2 under that photoinhibitory level of illumination was much smaller in the irradiated leaves than in the control. However, NPQ inhibition did not cause a significant difference in efficiency between WT and mutant when both were treated with UV-B irradiance of 2.4 W m 2. Therefore, we suggest that a significant decrease in carotenoid content after gamma-irradiation should partially contribute to the enhanced sensitivity of irradiated plants, at least to high-ligtil photoinhibition. This is accomplished by suppressing the thermal dissipation of excess light absorbed by photosynthetic pigments.
KEYWORD
gamma ray, high light, non-photochemical quenching (NPQ), ultraviolet (UV) ray, xanthophyll cycle
FullTexts / Linksout information
 
Listed journal information
ÇмúÁøÈïÀç´Ü(KCI)